Любое тело можно рассматривать как совокупность материальных точек, в качестве которых можно, например, брать молекулы. Пусть тело состоит из n материальных точек с массами m1, m2, ...mn.

Центром масс тела, состоящего из n материальных точек, называется точка (в геометрическом смысле), радиус-вектор которой определяется формулой:

Центром масс тела, состоящего из n материальных точек, называется точка (в геометрическом смысле), радиус-вектор

Здесь R1 – радиус-вектор точки с номером i (i = 1, 2, ... n).

Это определение выглядит непривычно, но на самом деле оно даёт положение того самого центра масс, о котором у нас имеется интуитивное представление. Например, центр масс стержня будет находиться в его середине. Сумма масс всех точек, входящая в знаменатель вышеопределённой формулы, называется массой тела. Массой тела называется сумма масс всех его точек: m = m1 + m2 + ... + mn .

Центры масс некоторых однородных пластин правильной формы

В симметричных однородных телах ЦМ всегда расположен в центре симметрии или лежит на оси симметрии, если у фигуры центра симметрии нет. Центр масс может находиться как внутри тела (диск, квадрат, треугольник), так и вне его (кольцо, рамка, угольник).

Для человека положение ЦМ зависит от принятой позы. Во многих видах спорта важным слагаемым успеха является способность сохранять равновесие. Так, в спортивной гимнастике, акробатике

большое количество элементов включат в себя разные виды равновесия. Важна способность сохранять равновесие в фигурном катании, в беге на коньках, где опора имеет очень малую площадь.

Условиями равновесия покоящегося тела являются одновременное равенство нулю суммы сил и суммы моментов сил, действующих на тело.

Выясним, какое положение должна занимать ось вращения, чтобы закреплённое на ней тело оставалось в равновесии под действием сил тяжести. Для этого разобьём тело на множество маленьких кусочков и нарисуем действующие на них силы тяжести.

Центр тяжести тела

Центр тяжести тела

В соответствии с правилом моментов для равновесия необходимо, чтобы сумма моментов всех этих сил относительно оси равнялась нулю.

Можно показать, что для каждого тела существует единственная точка, где сумма моментов сил тяжести относительно любой оси, проходящей через эту точку, равна нулю. Эта точка называется центром тяжести (обычно совпадает с центром масс).

Центром тяжести тела (ЦТ) называется точка, относительно которой сумма моментов сил тяжести, действующей на все частицы тела, равна нулю.

Таким образом, силы тяжести не вызывают вращения тела вокруг центра тяжести. Поэтому все силы тяжести можно было бы заменить единственной силой, которая приложена к этой точке и равна силе тяжести.

Для изучения движений тела спортсмена часто вводится термин общий центр тяжести (ОЦТ). Основные свойства центра тяжести:

• если тело закреплено на оси, проходящей через центр тяжести, то сила тяжести не будет вызывать его вращения;

• центр тяжести является точкой приложения силы тяжести;

• в однородном поле центр тяжести совпадает с центром масс.

Равновесным называется такое положение тела, при котором оно может оставаться в покое сколь угодно долго. При отклонении тела от положения равновесия, силы, действующие на него, изменяются, и равновесие сил нарушается.

Существуют различные виды равновесия (рис. 9). Принято различать три вида равновесия: устойчивое, неустойчивое и безразличное.

• Устойчивое равновесие (рис. 9, а) характеризуется тем, что тело возвращается в первоначальное положение при его отклонении. В таком случае возникают силы, или моменты сил, стремящаяся возвратить тело в исходное положение. Примером может служить положение тела с верхней опорой (например, вис на перекладине), когда при любых отклонениях тело стремится возвратиться в начальное положение.

• Безразличное равновесие (рис. 9, б) характеризуется тем, что при изменении положения тела не возникает сил или моментов сил, стремящихся возвратить тело в начальное положение или ещё более удалить тело от него. Это редко наблюдаемый у человека случай. Примером может служить состояние невесомости на космическом корабле.

• Неустойчивое равновесие (рис. 9, в) наблюдается тогда, когда при малых отклонениях тела возникают силы или моменты сил, стремящихся ещё больше отклонить тело от начального положения. Такой случай можно наблюдать, когда человек, стоя на опоре очень малой площади (значительно меньшей площади его двух ног или даже одной ноги), отклоняется в сторону.

Рисунок 9. Равновесие тела: устойчивое (а), безразличное (б), неустойчивое (в)

Равновесие тела: устойчивое, безразличное, неустойчивое

Наряду с перечисленными видами равновесия тел в биомеханике рассматривают ещё один вид равновесия – ограниченно-устойчивое. Этот вид равновесия отличается тем, что тело может вернуться в начальное положение при отклонении от него до некоторого предела, например, определяемого границей площади опоры. Если же отклонение переходит этот предел, равновесие становится неустойчивым.

Основная задача при обеспечении равновесия тела человека состоит в том, чтобы проекция ОЦМ тела находилась в пределах площади опоры. В зависимости от вида деятельности (сохранение статического положения, ходьба, бег и т. п.) и требований к устойчивости частота и быстрота корригирующих воздействий изменяются, но процессы сохранения равновесия одинаковы.

Распределение массы в теле человека

Масса тела и массы отдельных сегментов очень важны для различных аспектов биомеханики. Во многих видах спорта необходимо знать распределение массы для выработки правильной техники выполнения упражнений. Для анализа движений тела человека используется метод сегментирования: оно условно рассекается на определённые сегменты. Для каждого сегмента определяются его масса и положение центра масс. В табл. 1 определены массы частей тела в относительных единицах.

Таблица 1. Массы частей тела в относительных единицах

Сегмент Относительная масса сегмента
Голова 7%
Туловище 43%
Плечо 3%
Предплечье 2%
Кисть 1%
Бедро 12%
Голень 5%
Стопа 2%

Часто вместо понятия центра масс используют другое понятие – центр тяжести. В однородном поле тяжести центр тяжести всегда совпадает с центром масс. Положение центра тяжести звена указывают как его расстояние от оси проксимального сустава и выражают относительно длины звена, принятой за единицу.

В табл. 2 приведены анатомическое положение центров тяжести различных звеньев тела.

Таблица 2. Центры тяжести частей тела

Часть тела Положение центра тяжести
Бедро 0,44 длины звена
Голень 0,42 длины звена
Плечо 0,47 длины звена
Предплечье 0,42 длины звена
Туловище 0,44 расстояния от поперечной оси плечевых суставов до оси тазобедренных
Голова Расположена в области турецкого седла клиновидной кости (проекция спереди между бровями, сбоку – на 3,0 – 3,5 выше наружного слухового прохода)
Кисть В области головки третьей пястной кости
Стопа На прямой, соединяющей пяточный бугор пяточной кости с концом второго пальца на расстоянии 0,44 от первой точки
Общий центр масс тяжести при вертикальном положении тела Расположен при основной стойке в области малого таза, впереди крестца
Плечо 0,47 длины звена
Предплечье 0,42 длины звена
Туловище 0,44 расстояния от поперечной оси плечевых суставов до оси тазобедренных
Голова Расположена в области турецкого седла клиновидной кости (проекция спереди между бровями, сбоку – на 3,0 – 3,5 выше наружного слухового прохода)
Кисть В области головки третьей пястной кости
Стопа На прямой, соединяющей пяточный бугор пяточной кости с концом второго пальца на расстоянии 0,44 от первой точки
Общий центр масс тяжести при вертикальном положении тела Расположен при основной стойке в области малого таза, впереди крестца

Раздел статьи: Биомеханика